Bone marrow stromal cells and their application in neural injuries
Authors
Abstract:
Background: This article reviews experimental and clinical studies in which neural injuries repaired with bone marrow stromal cells. History: Bone marrow contains two kinds of stem cells: hematopoietic and nonhematopoietic (stromal) stem cell. In vitro studies indicate that bone marrow stromal cells have the capacity of differentiation into other cells (such as neural cell) under treatment with inducing agents. On the other hand, in vivo studies have shown that after transplantation of this cells into damaged neural tissues, engraft to host tissue, differentiat to neural cell and improves neurological and motor function. In addition to direct injection, other noninvasive methods such as intravenous, intraventricular and lumbar puncture use for bone marrow stromal cell transplantation. Conclusion: Bone marrow stromal cells are suitable source for the treatment of neural injuries because of easily available, immunological inert after transplantation, rapid expansion in culture, gene expression of neural cells and engraftment to host neural tissue.
similar resources
Bone Marrow Stromal Cells With Exercise and Thyroid Hormone Effect on Post-Stroke Injuries in Middle-aged Mice
Introduction: Based on our previous findings, the treatment of stem cells alone or in combination with thyroid hormone (T3) and mild exercise could effectively reduce the risk of stroke damage in young mice. However, it is unclear whether this treatment is effective in aged or middle-aged mice. Therefore, this study designed to assess whether combination of Bone Marrow Stromal Cells (BMSCs) wit...
full textBone Marrow Stromal Cells
Accepted, April 23, 2003. OBJECTIVE: We investigated the effect of human bone marrow stromal cells (hMSCs) administered intravenously on functional outcome after traumatic brain injury in adult rats. METHODS: hMSCs were harvested from three human donors. A controlled cortical impact was delivered to 27 adult male rats to induce traumatic brain injury, and 24 hours after injury, hMSCs were injec...
full textLow-frequency vibration treatment of bone marrow stromal cells induces bone repair in vivo
Objective(s):To study the effect of low-frequency vibration on bone marrow stromal cell differentiation and potential bone repair in vivo. Materials and Methods:Forty New Zealand rabbits were randomly divided into five groups with eight rabbits in each group. For each group, bone defects were generated in the left humerus of four rabbits, and in the right humerus of the other four rabbits. To t...
full textTrahalose Activates Autophagy and Prevents Hydrogen Peroxide-Induced Apoptosis in the Bone Marrow Stromal Cells
Bone marrow stromal stem cells (BMSCs) play a significant role in cell therapy. These cells quickly die after transplantation to the affected area due to oxidative stress. The natural disaccharide, trehalose which can be known as autophagy inducer. The present study aimed to investigate the role of trehalose in preventing BMSCs from oxidative stress caused by H2O2. BMSCs were isolated from the ...
full textRepressing of SOX6 and SOX9 in Situ Chondrogenic Differentiation of Rat Bone Marrow Stromal Cells
Introduction: SOX9 is a transcriptional activator which is necessary for chondrogenesis. SOX6 are closely related to DNA-binding proteins that critically enhance its function. Therefore, to carry out the growth plate chondrocyte differentiation program, SOX9 and SOX6 collaborate genomewide. Chondrocyte differentiation is also known to be promoted by glucocorticoids through unknown molecular mec...
full textTrahalose Activates Autophagy and Prevents Hydrogen Peroxide-Induced Apoptosis in the Bone Marrow Stromal Cells
Bone marrow stromal stem cells (BMSCs) play a significant role in cell therapy. These cells quickly die after transplantation to the affected area due to oxidative stress. The natural disaccharide, trehalose which can be known as autophagy inducer. The present study aimed to investigate the role of trehalose in preventing BMSCs from oxidative stress caused by H2O2. BMSCs were isolated from the ...
full textMy Resources
Journal title
volume 10 issue None
pages 28- 36
publication date 2009-03
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023